Bringing Research and Business Together for Colorado

NCAR developed and Vaisala commercialized the dropsonde, a meteorological instrument that is deployed from an aircraft into hurricanes to improve both track and intensity forecasts

News & Events

How will weather change in the future? It's been remarkably difficult to say, but researchers are now making important headway, thanks in part to a groundbreaking new data set at the National Center for Atmospheric Research (NCAR).

Scientists know that a warmer and wetter atmosphere will lead to major changes in our weather. But pinning down exactly how weather — such as thunderstorms, midwinter cold snaps, hurricanes, and mountain snowstorms — will evolve in the coming decades has proven a difficult challenge, constrained by the sophistication of models and the capacity of computers.

Now, a rich, new data set is giving scientists an unprecedented look at the future of weather. Nicknamed CONUS 1 by its creators, the data set is enormous. To generate it, the researchers ran the NCAR-based Weather Research and Forecasting model (WRF) at an extremely high resolution (4 kilometers, or about 2.5 miles) across the entire contiguous United States (sometimes known as "CONUS") for a total of 26 simulated years: half in the current climate and half in the future climate expected if society continues on its current trajectory.

NCAR Weather Research and Forecasting

The project took more than a year to run on the Yellowstone supercomputer at the NCAR-Wyoming Supercomputing Center. The result is a trove of data that allows scientists to explore in detail how today's weather would look in a warmer, wetter atmosphere.

CONUS 1, which was completed last year and made easily accessible through NCAR's Research Data Archive this fall, has already spawned nearly a dozen papers that explore everything from changes in rainfall intensity to changes in mountain snowpack.